Kavram 228: Mizan

Kavram Numarası: 228 | Geçtiği Ayet Sayısı: 2

Açıklama

Evrenin her yerinde geçerli olan, Yüce Allah'ın koyduğu fizik mizanları ve matematiksel mizanlarından bazıları. Atomic mass constantAtomik kütle sabitiAvogadro constantAvogadro sabitiBoltzmann constantBoltzmann sabitiConductance quantumİletkenlik kuantumElectron massElektron kütlesiElectron voltElektron voltElementary chargeTemel yükFaraday constantFaraday sabitiFine-structure constantİnce yapı sabitiİnverse fine-structure constantTers ince yapı sabitiJosephson constantJosephson sabitiMagnetic flux quantumManyetik akı kuantumuMolar gas constantMolar gaz sabitiNewtonian constant of gravitationNewton yerçekimi sabitiPlanck constantPlanck sabitiProton massProton kütlesiProton-electron mass ratioProton-elektron kütle oranıReduced Planck constantİndirgenmiş Planck sabitiRydberg constant times c in HzHz cinsinden Rydberg sabiti çarpı cStefan-Boltzmann constantStefan-Boltzmann sabitiVacuum electric permittivityVakum elektrik geçirgenliğiVacuum magnetic permeabilityVakum manyetik geçirgenliğiVon Klitzing constantVon Klitzing sabiti Matematiksel sabitler One11Prehistory� SHAPE \* MERGEFORMAT Two22Prehistory� SHAPE \* MERGEFORMAT One half1/20.5Prehistory� SHAPE \* MERGEFORMAT Pi� SHAPE \* MERGEFORMAT 3.14159 26535 89793 23846 [Mw 1][OEIS 1]Ratio of a circle's circumference to its diameter.1900 to 1600 BCE [2]�∖� SHAPE \* MERGEFORMAT Tau� SHAPE \* MERGEFORMAT 6.28318 53071 79586 47692[3][OEIS 2]Ratio of a circle's circumference to its radius. Equivalent to 2� SHAPE \* MERGEFORMAT 1900 to 1600 BCE [2]�∖� SHAPE \* MERGEFORMAT Square root of 2,Pythagoras constant.[4]2 SHAPE \* MERGEFORMAT 1.41421 35623 73095 04880 [Mw 2][OEIS 3]Positive root of �2=2 SHAPE \* MERGEFORMAT 1800 to 1600 BCE[5]� SHAPE \* MERGEFORMAT Square root of 3,Theodorus' constant[6]3 SHAPE \* MERGEFORMAT 1.73205 08075 68877 29352 [Mw 3][OEIS 4]Positive root of �2=3 SHAPE \* MERGEFORMAT 465 to 398 BCE� SHAPE \* MERGEFORMAT Square root of 5[7]5 SHAPE \* MERGEFORMAT 2.23606 79774 99789 69640 [OEIS 5]Positive root of �2=5 SHAPE \* MERGEFORMAT � SHAPE \* MERGEFORMAT Phi, Golden ratio[8]� SHAPE \* MERGEFORMAT or � SHAPE \* MERGEFORMAT 1.61803 39887 49894 84820 [Mw 4][OEIS 6]1+52 SHAPE \* MERGEFORMAT ~300 BCE� SHAPE \* MERGEFORMAT Silver ratio[9]�� SHAPE \* MERGEFORMAT 2.41421 35623 73095 04880 [Mw 5][OEIS 7]2+1 SHAPE \* MERGEFORMAT ~300 BCE� SHAPE \* MERGEFORMAT Zero00300 to 100 BCE[10]� SHAPE \* MERGEFORMAT Negative one−1−1300 to 200 BCE� SHAPE \* MERGEFORMAT Cube root of 223 SHAPE \* MERGEFORMAT 1.25992 10498 94873 16476 [Mw 6][OEIS 8]Real root of �3=2 SHAPE \* MERGEFORMAT 46 to 120 CE[11]� SHAPE \* MERGEFORMAT Cube root of 333 SHAPE \* MERGEFORMAT 1.44224 95703 07408 38232 [OEIS 9]Real root of �3=3 SHAPE \* MERGEFORMAT � SHAPE \* MERGEFORMAT Twelfth root of 2[12]212 SHAPE \* MERGEFORMAT 1.05946 30943 59295 26456 [OEIS 10]Real root of �12=2 SHAPE \* MERGEFORMAT � SHAPE \* MERGEFORMAT Supergolden ratio[13]� SHAPE \* MERGEFORMAT 1.46557 12318 76768 02665 [OEIS 11]1+29+39323+29−393233 SHAPE \* MERGEFORMAT Real root of �3=�2+1 SHAPE \* MERGEFORMAT � SHAPE \* MERGEFORMAT Imaginary unit[14]� SHAPE \* MERGEFORMAT 0 + 1iPrincipal root of �2=−1 SHAPE \* MERGEFORMAT [nb 1]1501 to 1576� SHAPE \* MERGEFORMAT Connective constant for the hexagonal lattice[15][16]� SHAPE \* MERGEFORMAT 1.84775 90650 22573 51225 [Mw 7][OEIS 12]2+2 SHAPE \* MERGEFORMAT , as a root of the polynomial �4−4�2+2=0 SHAPE \* MERGEFORMAT 1593[OEIS 12]� SHAPE \* MERGEFORMAT Kepler–Bouwkamp constant[17]�′ SHAPE \* MERGEFORMAT 0.11494 20448 53296 20070 [Mw 8][OEIS 13]∏�=3∞cos⁡(��)=cos⁡(�3)cos⁡(�4)cos⁡(�5)... SHAPE \* MERGEFORMAT 1596[OEIS 13]Wallis's constant2.09455 14815 42326 59148 [Mw 9][OEIS 14]45−1929183+45+1929183 SHAPE \* MERGEFORMAT Real root of �3−2�−5=0 SHAPE \* MERGEFORMAT 1616 to 1703� SHAPE \* MERGEFORMAT Euler's number[18]� SHAPE \* MERGEFORMAT 2.71828 18284 59045 23536 [Mw 10][OEIS 15]lim�→∞(1+1�)�=∑�=0∞1�!=1+11!+12!+13!⋯ SHAPE \* MERGEFORMAT 1618[19]�∖� SHAPE \* MERGEFORMAT Natural logarithm of 2[20]ln⁡2 SHAPE \* MERGEFORMAT 0.69314 71805 59945 30941 [Mw 11][OEIS 16]Real root of ��=2 SHAPE \* MERGEFORMAT ∑�=1∞(−1)�+1�=11−12+13−14+⋯ SHAPE \* MERGEFORMAT 1619[21] & 1668[22]�∖� SHAPE \* MERGEFORMAT Lemniscate constant[23]� SHAPE \* MERGEFORMAT 2.62205 75542 92119 81046 [Mw 12][OEIS 17]��=42�Γ(54)2=142�Γ(14)2 SHAPE \* MERGEFORMAT where � SHAPE \* MERGEFORMAT is Gauss's constant1718 to 1798�∖� SHAPE \* MERGEFORMAT Euler's constant� SHAPE \* MERGEFORMAT 0.57721 56649 01532 86060 [Mw 13][OEIS 18]lim�→∞(−log⁡�+∑�=1�1�)=∫1∞(−1�+1⌊�⌋)�� SHAPE \* MERGEFORMAT 1735Erdős–Borwein constant[24]� SHAPE \* MERGEFORMAT 1.60669 51524 15291 76378 [Mw 14][OEIS 19]∑�=1∞12�−1=11+13+17+115+⋯ SHAPE \* MERGEFORMAT 1749[25]�∖� SHAPE \* MERGEFORMAT Omega constantΩ SHAPE \* MERGEFORMAT 0.56714 32904 09783 87299 [Mw 15][OEIS 20]�(1)=1�∫0�log⁡(1+sin⁡����cot⁡�)�� SHAPE \* MERGEFORMAT where W is the Lambert W function1758 & 1783�∖� SHAPE \* MERGEFORMAT Apéry's constant[26]�(3) SHAPE \* MERGEFORMAT 1.20205 69031 59594 28539 [Mw 16][OEIS 21]∑�=1∞1�3=113+123+133+143+153+⋯ SHAPE \* MERGEFORMAT 1780[OEIS 21]�∖� SHAPE \* MERGEFORMAT Laplace limit[27]0.66274 34193 49181 58097 [Mw 17][OEIS 22]Real root of ���2+1�2+1+1=1 SHAPE \* MERGEFORMAT ~1782�∖� SHAPE \* MERGEFORMAT Soldner constant[28][29]� SHAPE \* MERGEFORMAT 1.45136 92348 83381 05028 [Mw 18][OEIS 23]li(�)=∫0���ln⁡�=0 SHAPE \* MERGEFORMAT ; root of the logarithmic integral function.1792[OEIS 23]Gauss's constant[30]� SHAPE \* MERGEFORMAT 0.83462 68416 74073 18628 [Mw 19][OEIS 24]1agm(1,2)=Γ(14)222�3=2�∫01��1−�4 SHAPE \* MERGEFORMAT where agm is the arithmetic–geometric mean1799[31]�∖� SHAPE \* MERGEFORMAT Second Hermite constant[32]�2 SHAPE \* MERGEFORMAT 1.15470 05383 79251 52901 [Mw 20][OEIS 25]23 SHAPE \* MERGEFORMAT 1822 to 1901� SHAPE \* MERGEFORMAT Liouville's constant[33]� SHAPE \* MERGEFORMAT 0.11000 10000 00000 00000 0001 [Mw 21][OEIS 26]∑�=1∞110�!=1101!+1102!+1103!+1104!+⋯ SHAPE \* MERGEFORMAT Before 1844�∖� SHAPE \* MERGEFORMAT First continued fraction constant�1 SHAPE \* MERGEFORMAT 0.69777 46579 64007 98201 [Mw 22][OEIS 27]11+12+13+14+15+⋯ SHAPE \* MERGEFORMAT �1(2)�0(2) SHAPE \* MERGEFORMAT , where ��(�) SHAPE \* MERGEFORMAT is the modified Bessel function1855[34]�∖� SHAPE \* MERGEFORMAT Ramanujan's constant[35]262 53741 26407 68743 .99999 99999 99250 073 [Mw 23][OEIS 28]��163 SHAPE \* MERGEFORMAT 1859�∖� SHAPE \* MERGEFORMAT Glaisher–Kinkelin constant� SHAPE \* MERGEFORMAT 1.28242 71291 00622 63687[Mw 24][OEIS 29]�112−�′(−1)=�18−12∑�=0∞1�+1∑�=0�(−1)�(��)(�+1)2ln⁡(�+1) SHAPE \* MERGEFORMAT 1860[OEIS 29]Catalan's constant[36][37][38]� SHAPE \* MERGEFORMAT 0.91596 55941 77219 01505 [Mw 25][OEIS 30]∫01∫01����1+�2�2=∑�=0∞(−1)�(2�+1)2=112−132+⋯ SHAPE \* MERGEFORMAT 1864Dottie number[39]0.73908 51332 15160 64165 [Mw 26][OEIS 31]Real root of cos⁡�=� SHAPE \* MERGEFORMAT 1865[Mw 26]�∖� SHAPE \* MERGEFORMAT Meissel–Mertens constant[40]� SHAPE \* MERGEFORMAT 0.26149 72128 47642 78375 [Mw 27][OEIS 32]lim�→∞(∑�≤�1�−ln⁡ln⁡�)=�+∑�(ln⁡(1−1�)+1�) SHAPE \* MERGEFORMAT where γ is the Euler–Mascheroni constant and p is prime1866 & 1873Universal parabolic constant[41]� SHAPE \* MERGEFORMAT 2.29558 71493 92638 07403 [Mw 28][OEIS 33]ln⁡(1+2)+2=arsinh⁡(1)+2 SHAPE \* MERGEFORMAT Before 1891[42]�∖� SHAPE \* MERGEFORMAT Cahen's constant[43]� SHAPE \* MERGEFORMAT 0.64341 05462 88338 02618 [Mw 29][OEIS 34]∑�=1∞(−1)���−1=11−12+16−142+11806±⋯ SHAPE \* MERGEFORMAT where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ...1891�∖� SHAPE \* MERGEFORMAT Gelfond's constant[44]�� SHAPE \* MERGEFORMAT 23.14069 26327 79269 0057 [Mw 30][OEIS 35](−1)−�=�−2�=∑�=0∞���!=1+�11+�22+�36+⋯ SHAPE \* MERGEFORMAT 1900[45]�∖� SHAPE \* MERGEFORMAT Gelfond–Schneider constant[46]22 SHAPE \* MERGEFORMAT 2.66514 41426 90225 18865 [Mw 31][OEIS 36]Before 1902[OEIS 36]�∖� SHAPE \* MERGEFORMAT Second Favard constant[47]�2 SHAPE \* MERGEFORMAT 1.23370 05501 36169 82735 [Mw 32][OEIS 37]�28=∑�=0∞1(2�−1)2=112+132+152+172+⋯ SHAPE \* MERGEFORMAT 1902 to 1965�∖� SHAPE \* MERGEFORMAT Golden angle[48]� SHAPE \* MERGEFORMAT 2.39996 32297 28653 32223 [Mw 33][OEIS 38]2��2=�(3−5) SHAPE \* MERGEFORMAT or180(3−5)=137.50776… SHAPE \* MERGEFORMAT in degrees1907�∖� SHAPE \* MERGEFORMAT Sierpiński's constant[49]� SHAPE \* MERGEFORMAT 2.58498 17595 79253 21706 [Mw 34][OEIS 39]�(2�+ln⁡4�3Γ(14)4)=�(2�+4ln⁡Γ(34)−ln⁡�)=�(2ln⁡2+3ln⁡�+2�−4ln⁡Γ(14)) SHAPE \* MERGEFORMAT 1907Landau–Ramanujan constant[50]� SHAPE \* MERGEFORMAT 0.76422 36535 89220 66299 [Mw 35][OEIS 40]12∏�≡3 mod 4�prime(1−1�2)−12=�4∏�≡1 mod 4�prime(1−1�2)12 SHAPE \* MERGEFORMAT 1908[OEIS 40]First Nielsen–Ramanujan constant[51]�1 SHAPE \* MERGEFORMAT 0.82246 70334 24113 21823 [Mw 36][OEIS 41]�(2)2=�212=∑�=1∞(−1)�+1�2=112−122+132−142+⋯ SHAPE \* MERGEFORMAT 1909�∖� SHAPE \* MERGEFORMAT Gieseking constant[52]� SHAPE \* MERGEFORMAT 1.01494 16064 09653 62502 [Mw 37][OEIS 42]334(1−∑�=0∞1(3�+2)2+∑�=1∞1(3�+1)2)= SHAPE \* MERGEFORMAT 334(1−122+142−152+172−182+1102±⋯) SHAPE \* MERGEFORMAT .1912Bernstein's constant[53]� SHAPE \* MERGEFORMAT 0.28016 94990 23869 13303 [Mw 38][OEIS 43]lim�→∞2��2�(�) SHAPE \* MERGEFORMAT , where En(f) is the error of the best uniform approximation to a real function f(x) on the interval [−1, 1] by real polynomials of no more than degree n, and f(x) = |x|1913Tribonacci constant[54]1.83928 67552 14161 13255 [Mw 39][OEIS 44]1+19+3333+19−33333=1+4cosh⁡(13cosh−1⁡(2+38))3 SHAPE \* MERGEFORMAT Real root of �3−�2−�−1=0 SHAPE \* MERGEFORMAT 1914 to 1963� SHAPE \* MERGEFORMAT Brun's constant[55]�2 SHAPE \* MERGEFORMAT 1.90216 05831 04 [Mw 40][OEIS 45]∑�(1�+1�+2)=(13+15)+(15+17)+(111+113)+⋯ SHAPE \* MERGEFORMAT where the sum ranges over all primes p such that p + 2 is also a prime1919[OEIS 45]Twin primes constant�2 SHAPE \* MERGEFORMAT 0.66016 18158 46869 57392 [Mw 41][OEIS 46]∏�prime�≥3(1−1(�−1)2) SHAPE \* MERGEFORMAT 1922Plastic ratio[56]� SHAPE \* MERGEFORMAT 1.32471 79572 44746 02596 [Mw 42][OEIS 47]1+1+1+⋯333=12+69183+12−69183 SHAPE \* MERGEFORMAT Real root of �3=�+1 SHAPE \* MERGEFORMAT 1924[OEIS 47]� SHAPE \* MERGEFORMAT Bloch's constant[57]� SHAPE \* MERGEFORMAT 0.4332≤�≤0.4719 SHAPE \* MERGEFORMAT [Mw 43][OEIS 48]The best known bounds are 34+2×10−4≤�≤3−12⋅Γ(13)Γ(1112)Γ(14) SHAPE \* MERGEFORMAT 1925[OEIS 48]Z score for the 97.5 percentile point[58][59][60][61]�.975 SHAPE \* MERGEFORMAT 1.95996 39845 40054 23552 [Mw 44][OEIS 49]2erf−1⁡(0.95) SHAPE \* MERGEFORMAT where erf−1(x) is the inverse error functionReal number � SHAPE \* MERGEFORMAT such that 12�∫−∞��−�2/2d�=0.975 SHAPE \* MERGEFORMAT 1925Landau's constant[57]� SHAPE \* MERGEFORMAT 0.5�≤0.54326 SHAPE \* MERGEFORMAT [Mw 45][OEIS 50]The best known bounds are 0.5�≤Γ(13)Γ(56)Γ(16) SHAPE \* MERGEFORMAT 1929Landau's third constant[57]� SHAPE \* MERGEFORMAT 0.5�≤0.7853 SHAPE \* MERGEFORMAT 1929Prouhet–Thue–Morse constant[62]� SHAPE \* MERGEFORMAT 0.41245 40336 40107 59778 [Mw 46][OEIS 51]∑�=0∞��2�+1=14[2−∏�=0∞(1−122�)] SHAPE \* MERGEFORMAT where �� SHAPE \* MERGEFORMAT is the nth term of the Thue–Morse sequence1929[OEIS 51]�∖� SHAPE \* MERGEFORMAT Golomb–Dickman constant[63]� SHAPE \* MERGEFORMAT 0.62432 99885 43550 87099 [Mw 47][OEIS 52]∫01�Li(�)��=∫0∞�(�)�+2�� SHAPE \* MERGEFORMAT where Li(t) is the logarithmic integral, and ρ(t) is the Dickman function1930 & 1964Constant related to the asymptotic behavior of Lebesgue constants[64]� SHAPE \* MERGEFORMAT 0.98943 12738 31146 95174 [Mw 48][OEIS 53]lim�→∞(��−4�2ln⁡(2�+1))=4�2(∑�=1∞2ln⁡�4�2−1−Γ′(12)Γ(12)) SHAPE \* MERGEFORMAT 1930[Mw 48]Feller–Tornier constant[65]�FT SHAPE \* MERGEFORMAT 0.66131 70494 69622 33528 [Mw 49][OEIS 54]12∏� prime(1−2�2)+12=3�2∏� prime(1−1�2−1)+12 SHAPE \* MERGEFORMAT 1932Base 10 Champernowne constant[66]�10 SHAPE \* MERGEFORMAT 0.12345 67891 01112 13141 [Mw 50][OEIS 55]Defined by concatenating representations of successive integers:0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...1933�∖� SHAPE \* MERGEFORMAT Salem constant[67]�10 SHAPE \* MERGEFORMAT 1.17628 08182 59917 50654 [Mw 51][OEIS 56]Largest real root of �10+�9−�7−�6−�5−�4−�3+�+1=0 SHAPE \* MERGEFORMAT 1933[OEIS 56]� SHAPE \* MERGEFORMAT Khinchin's constant[68]�0 SHAPE \* MERGEFORMAT 2.68545 20010 65306 44530 [Mw 52][OEIS 57]∏�=1∞[1+1�(�+2)]log2⁡(�) SHAPE \* MERGEFORMAT 1934Lévy's constant (1)[69]� SHAPE \* MERGEFORMAT 1.18656 91104 15625 45282 [Mw 53][OEIS 58]�212ln⁡2 SHAPE \* MERGEFORMAT 1935Lévy's constant (2)[70]�� SHAPE \* MERGEFORMAT 3.27582 29187 21811 15978 [Mw 54][OEIS 59]��2/(12ln⁡2) SHAPE \* MERGEFORMAT 1936Copeland–Erdős constant[71]��� SHAPE \* MERGEFORMAT 0.23571 11317 19232 93137 [Mw 55][OEIS 60]Defined by concatenating representations of successive prime numbers:0.2 3 5 7 11 13 17 19 23 29 31 37 ...1946[OEIS 60]�∖� SHAPE \* MERGEFORMAT Mills' constant[72]� SHAPE \* MERGEFORMAT 1.30637 78838 63080 69046 [Mw 56][OEIS 61]Smallest positive real number A such that ⌊�3�⌋ SHAPE \* MERGEFORMAT is prime for all positive integers n1947Gompertz constant[73]� SHAPE \* MERGEFORMAT 0.59634 73623 23194 07434 [Mw 57][OEIS 62]∫0∞�−�1+���=∫01��1−ln⁡�=11+11+11+21+21+31+3/⋯ SHAPE \* MERGEFORMAT Before 1948[OEIS 62]de Bruijn–Newman constantΛ SHAPE \* MERGEFORMAT 0≤Λ≤0.2 SHAPE \* MERGEFORMAT The number Λ such that �(�,�)=∫0∞���2Φ(�)cos⁡(��)�� SHAPE \* MERGEFORMAT has real zeros if and only if λ ≥ Λ.where Φ(�)=∑�=1∞(2�2�4�9�−3��2�5�)�−��2�4� SHAPE \* MERGEFORMAT .1950Van der Pauw constant�ln⁡2 SHAPE \* MERGEFORMAT 4.53236 01418 27193 80962 [OEIS 63]Before 1958[OEIS 64]�∖� SHAPE \* MERGEFORMAT Magic angle[74]�m SHAPE \* MERGEFORMAT 0.95531 66181 245092 78163 [OEIS 65]arctan⁡2=arccos⁡13≈54.7356∘ SHAPE \* MERGEFORMAT Before 1959[75][74]�∖� SHAPE \* MERGEFORMAT Artin's constant[76]�Artin SHAPE \* MERGEFORMAT 0.37395 58136 19202 28805 [Mw 58][OEIS 66]∏� prime(1−1�(�−1)) SHAPE \* MERGEFORMAT Before 1961[OEIS 66]Porter's constant[77]� SHAPE \* MERGEFORMAT 1.46707 80794 33975 47289 [Mw 59][OEIS 67]6ln⁡2�2(3ln⁡2+4�−24�2�′(2)−2)−12 SHAPE \* MERGEFORMAT where γ is the Euler–Mascheroni constant and ζ '(2) is the derivative of the Riemann zeta function evaluated at s = 21961[OEIS 67]Lochs constant[78]� SHAPE \* MERGEFORMAT 0.97027 01143 92033 92574 [Mw 60][OEIS 68]6ln⁡2ln⁡10�2 SHAPE \* MERGEFORMAT 1964DeVicci's tesseract constant1.00743 47568 84279 37609 [OEIS 69]The largest cube that can pass through in an 4D hypercube.Positive root of 4�8−28�6−7�4+16�2+16=0 SHAPE \* MERGEFORMAT 1966[OEIS 69]� SHAPE \* MERGEFORMAT Lieb's square ice constant[79]1.53960 07178 39002 03869 [Mw 61][OEIS 70](43)32=833 SHAPE \* MERGEFORMAT 1967� SHAPE \* MERGEFORMAT Niven's constant[80]� SHAPE \* MERGEFORMAT 1.70521 11401 05367 76428 [Mw 62][OEIS 71]1+∑�=2∞(1−1�(�)) SHAPE \* MERGEFORMAT 1969Stephens' constant[81]0.57595 99688 92945 43964 [Mw 63][OEIS 72]∏� prime(1−��3−1) SHAPE \* MERGEFORMAT 1969[OEIS 72]Regular paperfolding sequence[82][83]� SHAPE \* MERGEFORMAT 0.85073 61882 01867 26036 [Mw 64][OEIS 73]∑�=0∞82�22�+2−1=∑�=0∞122�1−122�+2 SHAPE \* MERGEFORMAT 1970[OEIS 73]�∖� SHAPE \* MERGEFORMAT Reciprocal Fibonacci constant[84]� SHAPE \* MERGEFORMAT 3.35988 56662 43177 55317 [Mw 65][OEIS 74]∑�=1∞1��=11+11+12+13+15+18+113+⋯ SHAPE \* MERGEFORMAT where Fn is the nth Fibonacci number1974[OEIS 74]�∖� SHAPE \* MERGEFORMAT Chvátal–Sankoff constant for the binary alphabet�2 SHAPE \* MERGEFORMAT 0.788071≤�2≤0.826280 SHAPE \* MERGEFORMAT lim�→∞E⁡[��,2]� SHAPE \* MERGEFORMAT where E[λn,2] is the expected longest common subsequence of two random length-n binary strings1975Feigenbaum constant δ[85]� SHAPE \* MERGEFORMAT 4.66920 16091 02990 67185 [Mw 66][OEIS 75]lim�→∞��+1−����+2−��+1 SHAPE \* MERGEFORMAT where the sequence xn is given by ��+1=���(1−��) SHAPE \* MERGEFORMAT 1975Chaitin's constants[86]Ω SHAPE \* MERGEFORMAT In general they are uncomputable numbers. But one such number is 0.00787 49969 97812 3844.[Mw 67][OEIS 76]∑�∈�2−|�| SHAPE \* MERGEFORMAT · p: Halted program· |p|: Size in bits of program p· P: Domain of all programs that stop.See also: Halting problem1975�∖� SHAPE \* MERGEFORMAT Robbins constant[87]Δ(3) SHAPE \* MERGEFORMAT 0.66170 71822 67176 23515 [Mw 68][OEIS 77]4+172−63−7�105+ln⁡(1+2)5+2ln⁡(2+3)5 SHAPE \* MERGEFORMAT 1977[OEIS 77]�∖� SHAPE \* MERGEFORMAT Weierstrass constant[88]0.47494 93799 87920 65033 [Mw 69][OEIS 78]25/4���/8Γ(14)2 SHAPE \* MERGEFORMAT Before 1978[89]�∖� SHAPE \* MERGEFORMAT Fransén–Robinson constant[90]� SHAPE \* MERGEFORMAT 2.80777 02420 28519 36522 [Mw 70][OEIS 79]∫0∞��Γ(�)=�+∫0∞�−��2+ln2⁡��� SHAPE \* MERGEFORMAT 1978Feigenbaum constant α[91]� SHAPE \* MERGEFORMAT 2.50290 78750 95892 82228 [Mw 66][OEIS 80]Ratio between the width of a tine and the width of one of its two subtines in a bifurcation diagram1979Second du Bois-Reymond constant[92]�2 SHAPE \* MERGEFORMAT 0.19452 80494 65325 11361 [Mw 71][OEIS 81]�2−72=∫0∞|���(sin⁡��)2|��−1 SHAPE \* MERGEFORMAT 1983[OEIS 81]�∖� SHAPE \* MERGEFORMAT Erdős–Tenenbaum–Ford constant� SHAPE \* MERGEFORMAT 0.08607 13320 55934 20688 [OEIS 82]1−1+log⁡log⁡2log⁡2 SHAPE \* MERGEFORMAT 1984Conway's constant[93]� SHAPE \* MERGEFORMAT 1.30357 72690 34296 39125 [Mw 72][OEIS 83]Real root of the polynomial:�71−�69−2�68−�67+2�66+2�65+�64−�63−�62−�61−�60−�59+2�58+5�57+3�56−2�55−10�54−3�53−2�52+6�51+6�50+�49+9�48−3�47−7�46−8�45−8�44+10�43+6�42+8�41−5�40−12�39+7�38−7�37+7�36+�35−3�34+10�33+�32−6�31−2�30−10�29−3�28+2�27+9�26−3�25+14�24−8�23−7�21+9�20+3�19−4�18−10�17−7�16+12�15+7�14+2�13−12�12−4�11−2�10+5�9+�7−7�6+7�5−4�4+12�3−6�2+3�−6 = 0 SHAPE \* MERGEFORMAT 1987� SHAPE \* MERGEFORMAT Hafner–Sarnak–McCurley constant[94]� SHAPE \* MERGEFORMAT 0.35323 63718 54995 98454 [Mw 73][OEIS 84]∏� prime(1−(1−∏�≥1(1−1��))2) SHAPE \* MERGEFORMAT 1991[OEIS 84]Backhouse's constant[95]� SHAPE \* MERGEFORMAT 1.45607 49485 82689 67139 [Mw 74][OEIS 85]lim�→∞|��+1��|where:�(�)=1�(�)=∑�=1∞���� SHAPE \* MERGEFORMAT �(�)=1+∑�=1∞����=1+2�+3�2+5�3+⋯ SHAPE \* MERGEFORMAT where pk is the kth prime number1995Viswanath constant[96]1.13198 82487 943 [Mw 75][OEIS 86]lim�→∞|��|1� SHAPE \* MERGEFORMAT where fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/21997Komornik–Loreti constant[97]� SHAPE \* MERGEFORMAT 1.78723 16501 82965 93301 [Mw 76][OEIS 87]Real number � SHAPE \* MERGEFORMAT such that 1=∑�=1∞���� SHAPE \* MERGEFORMAT , or ∏�=0∞(1−1�2�)+�−2�−1=0 SHAPE \* MERGEFORMAT where tk is the kth term of the Thue–Morse sequence1998�∖� SHAPE \* MERGEFORMAT Embree–Trefethen constant�⋆ SHAPE \* MERGEFORMAT 0.702581999Heath-Brown–Moroz constant[98]� SHAPE \* MERGEFORMAT 0.00131 76411 54853 17810 [Mw 77][OEIS 88]∏� prime(1−1�)7(1+7�+1�2) SHAPE \* MERGEFORMAT 1999[OEIS 88]MRB constant[99][100][101]� SHAPE \* MERGEFORMAT 0.18785 96424 62067 12024 [Mw 78][Ow 1][OEIS 89]∑�=1∞(−1)�(�1/�−1)=−11+22−33+⋯ SHAPE \* MERGEFORMAT 1999Prime constant[102]� SHAPE \* MERGEFORMAT 0.41468 25098 51111 66024 [OEIS 90]∑� prime12�=14+18+132+⋯ SHAPE \* MERGEFORMAT 1999[OEIS 90]�∖� SHAPE \* MERGEFORMAT Somos' quadratic recurrence constant[103]� SHAPE \* MERGEFORMAT 1.66168 79496 33594 12129 [Mw 79][OEIS 91]∏�=1∞�1/2�=123⋯=11/221/431/8⋯ SHAPE \* MERGEFORMAT 1999[Mw 79]Foias constant[104]� SHAPE \* MERGEFORMAT 1.18745 23511 26501 05459 [Mw 80][OEIS 92]��+1=(1+1��)� for �=1,2,3,… SHAPE \* MERGEFORMAT Foias constant is the unique real number such that if x1 = α then the sequence diverges to infinity.2000Logarithmic capacity of the unit disk[105][106]0.59017 02995 08048 11302[Mw 81][OEIS 93]Γ(14)24�3/2 SHAPE \* MERGEFORMAT Before 2003[OEIS 93]�∖� SHAPE \* MERGEFORMAT Taniguchi constant[81]0.67823 44919 17391 97803[Mw 82][OEIS 94]∏� prime(1−3�3+2�4+1�5−1�6) SHAPE \* MERGEFORMAT Before 2005[81]

Geçtiği Ayetler

Toplam 2 ayette geçiyor
Sure No Sure Adı Ayet No Link
55 Rahmân/Rahmân 7 Ayet 7
55 Rahmân/Rahmân 8 Ayet 8